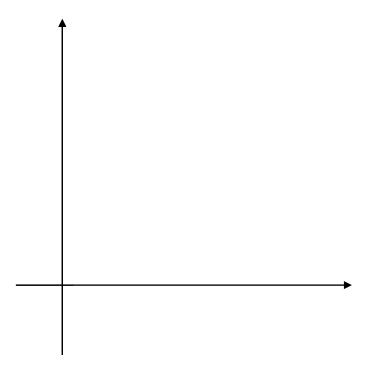
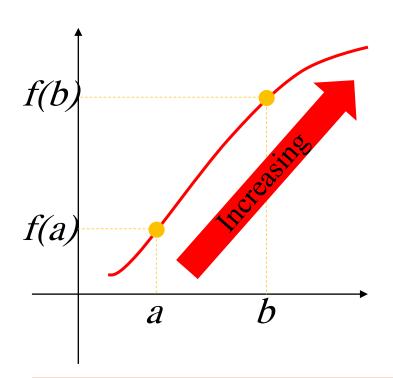


In grade 10 class, you've learned how to study the variations of a given function.



The graph of a function rises from left to right over an interval I.

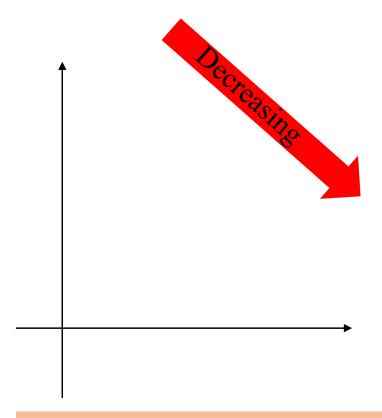
In grade 10 class, you've learned how to study the variations of a given function.



f is increasing function over an interval I: For all a, b in I, if $a \le b$ then $f(a) \le f(b)$

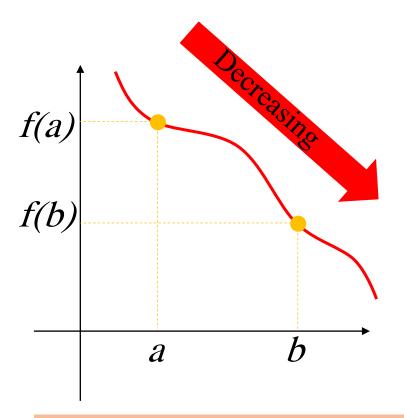
The graph of a function rises from left to right over an interval I.

In grade 10 class, you've learned how to study the variations of a given function.



The graph of a function falls from left to right over an interval I.

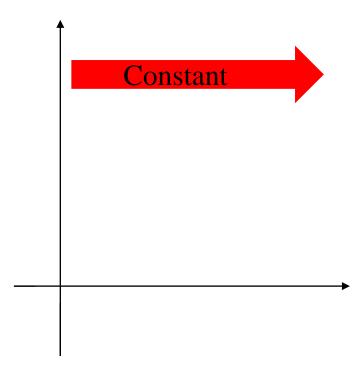
In grade 10 class, you've learned how to study the variations of a given function.



f is decreasing function over an interval I: For all a, b in I, if $a \le b$ then $f(a) \ge f(b)$

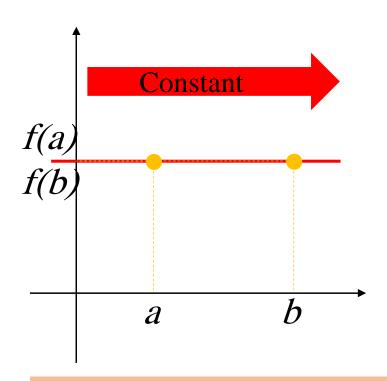
The graph of a function falls from left to right over an interval I.

In grade 10 class, you've learned how to study the variations of a given function.



The graph of a function is a horizontal line over an interval I.

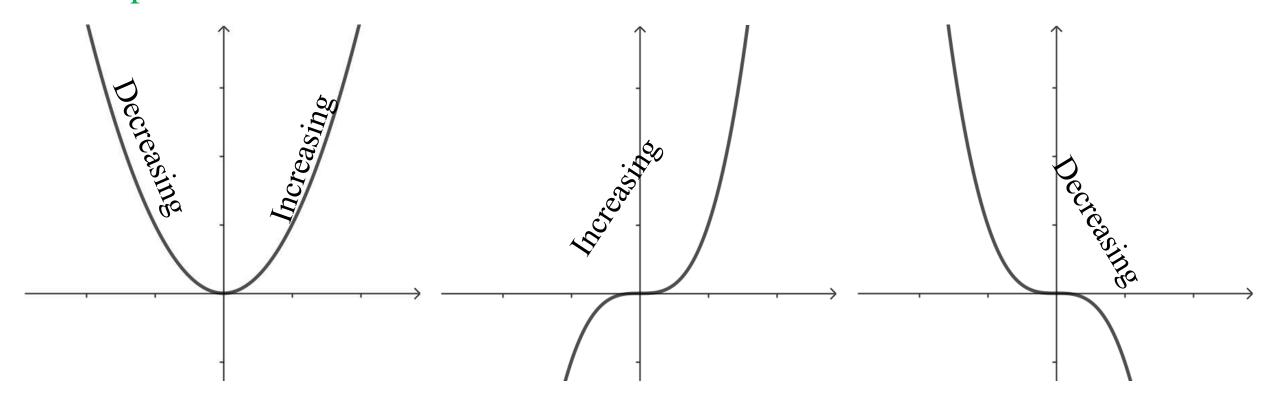
In grade 10 class, you've learned how to study the variations of a given function.



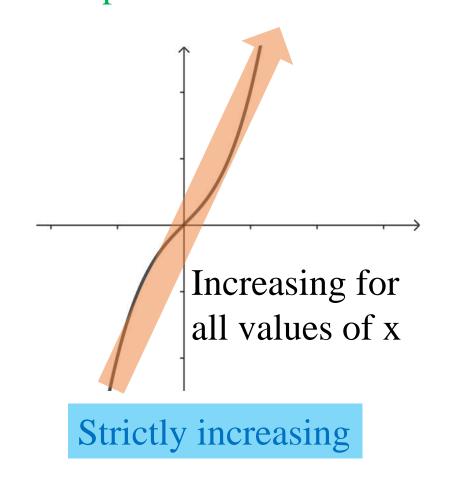
f is a constant function over an interval I: For all a, b in I, if $a \le b$ then f(a) = f(b)

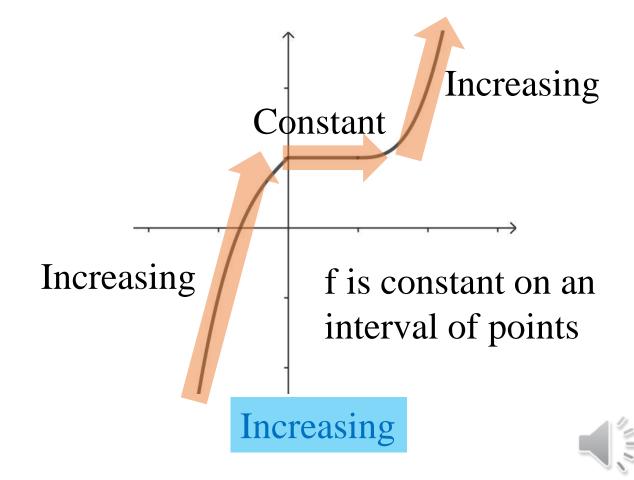
The graph of a function is a horizontal line over an interval I.

In general, a function can have only one variation or more than one variation. Example:

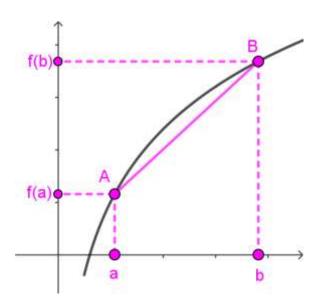


What is the difference between increasing and strictly increasing? Example:

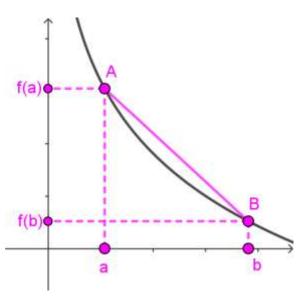




What is the relation between the derived function f' of f and the variations of the function f?

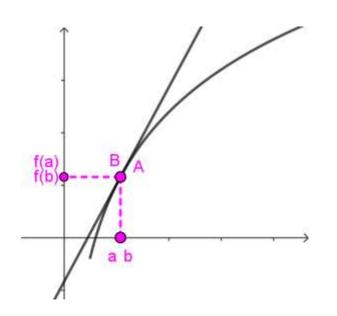


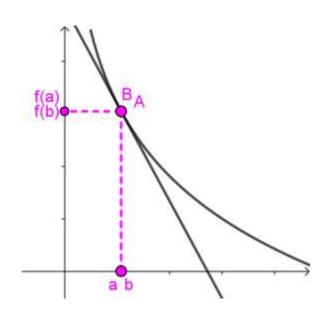
If the graph is increasing, the slope of the secant line (AB) is positive. $\frac{f(b)-f(a)}{b-a} > 0$



If the graph is decreasing, the slope of the secant line (AB) is negative. $\frac{f(b)-f(a)}{b-a} < 0$

Same for the slope of the tangent line when B becomes on A.





- * f is increasing, the slope of the tangent is positive: derivative is positive.
- **\$** f decreasing, the slope of the tangent is negative: derivative is negative.

We can use derivative to study the variations of a function f:

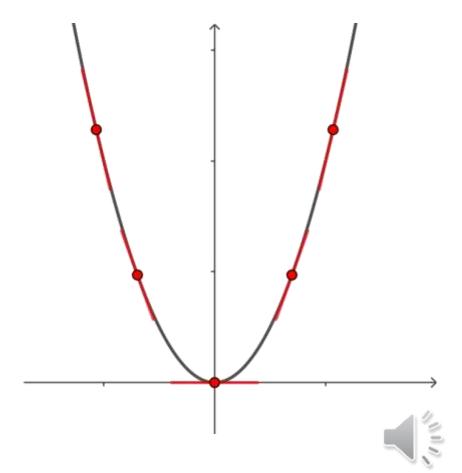
- 1. Calculate f'(x)
- 2. Study the sign of f'(x)
- 3. Discuss:
 - If $f'(x) \ge 0$, the function is increasing.
 - \Leftrightarrow If f'(x) > 0 except at some point, the function is strictly increasing
 - If $f'(x) \le 0$, the function is decreasing.
 - \Leftrightarrow If f'(x) < 0 except at some points, the function is strictly decreasing.

Example:

Consider the differentiable function $f(x) = x^2$ defined over IR.

$$f'(x) = 2x$$

- \clubsuit If x > 0, f'(x) > 0 so f is strictly increasing.
- \clubsuit If x < 0, f'(x) < 0 so f is strictly decreasing.
- If x = 0, f'(x) = 0 The tangent is horizontal



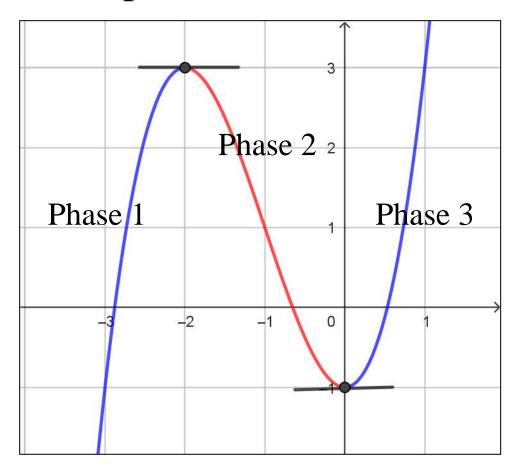
The table of variations summarizes the variations of a function f. It includes:

- * The domain of definition and the critical points.
- * The sign of the derivative.
- **The variations of the function.**

	$\boldsymbol{\mathcal{X}}$	Domain of definition and the critical points							
f	'(x)	Sig	gns of the derivat	ive					
f	(x)	Variations:	7: increasing	¥ : decreasing					

Table of variations

Example 1:



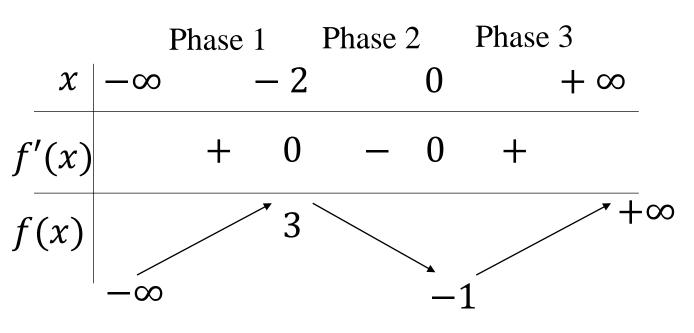


Table of variations

Example 2:

Consider the differentiable function f defined over IR by $f(x) = x^2$

$$+2x - 3$$

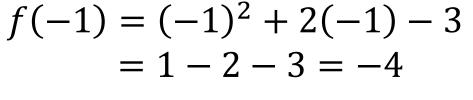
$$f'(x) = 2x + 2$$

$$f'(x) = 0$$
; $2x + 2 = 0$; $x = -\frac{2}{2} = -1$

_	X	$-\infty$		- 1		+ ∞
	f'(x)		_	0	+	
_	f(x)	+∞				√ +∞

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 = +\infty$$



Local extremum

Extremum: maximum or minimum

We said that a function f admits a local extremum at x = a if:

$$f'(a) = 0$$

 \Leftrightarrow f' change its sign (f change its variations)

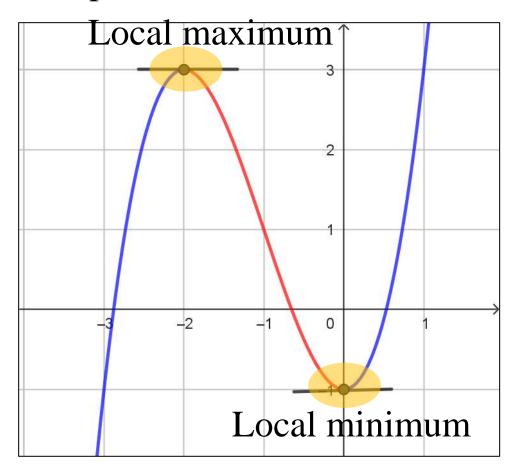
Example 1:

\mathcal{X}	$-\infty$		- 1	+	- ∞
f'(x)		_	0	+	
f(x)	+∞				+∞
			-4		

f'(x) vanishes at x = -1 and changes its sign from – to +

BSA BE SMAIT ACADEMY

Example 2:



Graphically:

Local extremum admits a horizontal tangent and the function changes its variation

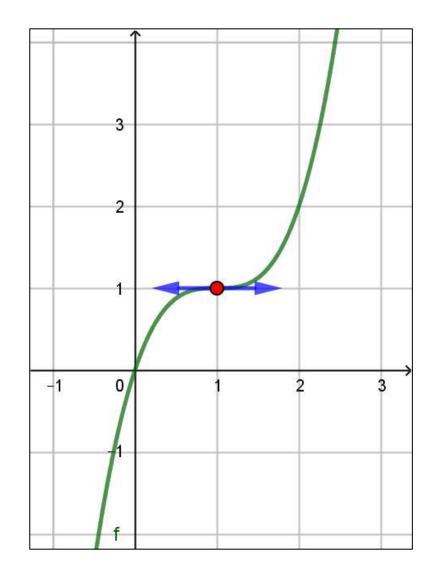
BSA BE SMART ACADEMY

Remark:

Given the function
$$f(x) = (x - 1)^3 + 1$$

 $f'(x) = 3(x - 1)^2 \ge 0$
 $f'(x) = 0$ at $x = 1$
But $f'(x)$ doesn't change its sign at $x = 1$
So (1,1) doesn't represent a local

maximum nor a local minimum.



Consider the function f differentiable and defined over IR by $f(x) = x^3$. Study the variations of f and set up its table of variations.

$$f'(x) = 3x^2 \ge 0 \text{ for all } x$$

 $f'(x) = 0 ; 3x^2 = 0 ; x = 0$

+
+∞

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$

$$f(0) = (0)^3 = 0$$

The table of variations below represent a function f defined over IR.

x	$-\infty$	- 1		0		2	+∞
f'(x)	_	0	+	0	_	0	_
f(x)	+∞			5		1	
		-4					2

Answer with true or false and justify.

1) The curve of f admits a horizontal asymptote.

True

$$\lim_{x \to +\infty} f(x) = 2$$
 so $y = 2$ is a horizontal asymptote.

Application 2

The table of variations below represent a function f defined over IR.

x	$-\infty$	- 1		0		2	+∞
f'(x)	_	0	+	0	_	0	_
f(x)	+∞	`		5		1	
		-4	0.1				2

Answer with true or false and justify.

2) The curve of *f* admits 3 local extrema.

False

(-1;-4) is a local minimum, (0;5) is a local maximum but (2;1) is not a local extremum since f' does not change its sign near to x=2

The table of variations below represent a function f defined over IR.

x	$-\infty$	- 1		0		2	+∞
f'(x)	_	0	+	0	_	0	_
f(x)	+∞			5		1	
		-4					2

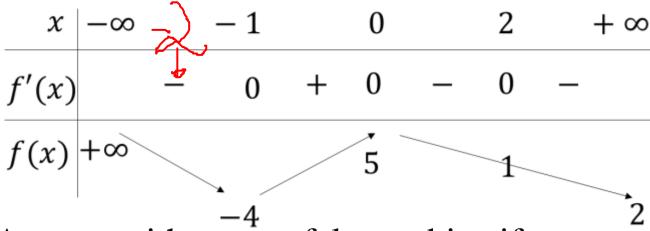
Answer with true or false and justify.

3) The curve of f admits 3 horizontal tangents.

True

$$f'(-1) = f'(0) = f'(2) = 0$$
 so the tangents at these three points are horizontal.

The table of variations below represent a function f defined over IR.



Answer with true or false and justify.

4)
$$f'(-2) > 0$$

False

When
$$x < -1$$
; $f'(x) < 0$; so $f'(-2) < 0$

